This article explains the point that, even though making the batteries for electric vehicles produces emissions, electric vehicles produce less greenhouse gas emissions than gas cars in the long run. The article also describes situations in which electric vehicles may produce more emissions than others. It may benefit students to discuss that owning and using an electric car isn’t accessible for everyone based on income, ability, and local infrastructure. If teachers have time to dedicate a whole lesson to this topic, students may enjoy the lesson on Electric Vehicles and Climate Change. Alternatively, students (especially Oregon students) can listen to the podcast episode It’s Electric (Vehicles) to hear how Oregon is implementing policy and infrastructure changes to make owning and operating an EV more accessible.
Written By: MIT Environmental Solutions Initiative
The MIT Climate Change Engagement Program, a part of MIT Climate HQ, provides the public with nonpartisan, easy-to-understand, and scientifically-grounded information on climate change and its solutions.
Although many fully electric vehicles (EVs) carry “zero emissions” badges, this claim is not quite true. Battery-electric cars may not emit greenhouse gases from their tailpipes, but some emissions are created in the process of building and charging the vehicles. Nevertheless, says Sergey Paltsev, Deputy Director of the MIT Joint Program on the Science and Policy of Global Change, electric vehicles are clearly a lower-emissions option than cars with internal combustion engines. Over the course of their driving lifetimes, EVs will create fewer carbon emissions than gasoline-burning cars under nearly any conditions.
“We shouldn't claim victory that with this switch to electric cars, problem solved, we are going to have zero emissions,” he says. “No, that's not the case. But electric cars are actually much, much better in terms of the impact on the climate in comparison to internal combustion vehicles. And in time, that comparative advantage of electric cars is going to grow.”
One source of EV emissions is the creation of their large lithium-ion batteries. The use of minerals including lithium, cobalt, and nickel, which are crucial for modern EV batteries, requires using fossil fuels to mine those materials and heat them to high temperatures. As a result, building the 80 kWh lithium-ion battery found in a Tesla Model 3 creates between 2.5 and 16 metric tons of CO2 (exactly how much depends greatly on what energy source is used to do the heating). This intensive battery manufacturing means that building a new EV can produce around 80% more emissions than building a comparable gas-powered car.